
Wide field synchrotron radiation based x-ray
tomographic microscopy @ TOMCAT

David Haberthür

September 15, 2009

This document1 should give a walk through for successfully performing a high resolution
synchrotron radiation based x-ray tomographic microscopy with enhaced lateral field of
view (WF-SRXTM, [1]) at TOMCAT, the beamline for TOmographic Microscopy and
Coherent rAdiology experimenTs [2]

1. Setup of a WF-SRXTM scan

After starting MATLAB on one of the computing consoles at TOMCAT (start it with
entering matlab & in the console), open the file ∼/MATLAB/main.m in the home directory
of our E-Account e11126 (/sls/X02DA/data/e11126/).

Figure 1: User dialog

When you start this file, a user dialog asks you for the pa-
rameters for the scan (see figure 1). You should have an idea
about the diameter of your sample and some other parameters
of your scan to be able to input those into this dialog and get an
accurate simulation. Enter the desired field of view in the first
line, the parameters of the setup like Binning, Magnification and
Exposure Time on the second, third and fourth line.

The Overlap can be left around 100 px or changed to a value
you’d like. The following three parameters (Minimal and Max-
imal Quality (Qmin, Qmax) as well as Quality Stepwidth (Qstep)
influence the calculation of the different protocols. Choose a
broad range (like the defaults) for a good overview over the
different possible protocols, choose a small range if you want to
have a detailed choice over the different protocols.

The SimulationSize greatly influences the speed and accuracy
of the calculation. If you enter a small size, the different protocols
are calculated for a small Shepp–Logan phantom and the whole
simulation is done quickly, but not very accurate. If you want to scan all multiple

1A recent version is available at http://www.ana.unibe.ch/~haberthuer/manuals

1

/sls/X02DA/data/e11126/
http://www.ana.unibe.ch/~haberthuer/manuals

1 SETUP

protocols between Qmin and Qmax and not only choose one of the protocols, you can
safely leave this parameter on a small size, since the calculated number of Projections for
each protocol does not depend on it. If you want to choose one protocol depending on
the quality, you should set this parameter fairly high. This will increase the simulation
time, but you’ll get a more accurate estimation of the scanning quality.

The following fields are important for the writing of the parameter file, which are
needed for in the next step, the actual scan. If you want to write a preference file, put
“1” in the 10th field. This will generate a text file with the “Sample Name” you choose
in the second to last field in the folder /sls/X02DA/Data3/e11126/BeamTime, where
“BeamTime” is what you enter in the last field.

The MATLAB script will output several figures, some of them are shown in figure 2.

(a) Total Amount of Projections
per Protocol

(b) Error per pixel. x-axis shows
the total amount of projections

(c) Quality of the scan plotted vs.
scanning time needed (or vs.
protocols)

Figure 2: Output from main.m script. a) Total amount of projections per protocol. This
is the total amount of projections scanned for all subscans. b) Error of the
difference image to the phantom compared to the total amount of projections.
You can see a sharp increase in error for low amount of projections. c) Quality
of the scan vs. scanning time, including a polynomial fit (only to guide the
eye). The scanning time is estimates using the total amount of projections ×
the exposure time. This is where the user actually chooses a protocol (shown
as cross at approx. 16 min scanning time).

If you choose to scan only one protocol, you’ve entered “0” in the 11th input field, the
script asks you to choose one of the protocols in the quality plot shown in figure 2c and
then outputs a preference-file for one scan (see figures 3a and 3b). If you entered “1”,
you will not be asked to choose a protocol and the script outputs all possible protocols
from Qmin to Qmax with a step width of Qstep to a preference file (see figure 3c). An
example of a preference file for one protocol is shown in appendix B.4.

After you get this preference file, you can proceed to the next step.

2

/sls/X02DA/Data3/e11126/BeamTime

2 SCAN

(a) Choose one protocol (b) Output for one protocol

(c) Output for all protocols

Figure 3: Output Options

2. Scanning a sample with increased field of view

To perform a wide field scan at TOMCAT, you need to adjust the sample in the beam,
as you would do with a conventional scan. Make sure that you’ve aligned the sample in
such a way that the feature you want to have in the center of the resulting wide field
scan reconstructions is in the center of the preview window before proceeding (see the
wiki-page “perform run” for a bit of details on how to align the sample). When you’ve
aligned the sample, enter the “SampleName” into the corresponding field in the control
panel of TOMCAT (on the machine with three screen).

Copy widefieldscan_final.py from ∼/MATLAB/ to the current working directory
(/sls/X02DA/Data3/e11126/Beamtime). Start the Terminal of the machine next to the
one with the three screens and “cd” to the directory of the BeamTime. Start the wide
field scan with widefieldscan_fila.py PreferenceFile in the Terminal in the correct
directory. “PreferenceFile” is the file that MATLAB has written after it has calculated
all the protocols and you’ve selected one. If you’ve entered the parameters exactly
like in figure 1, the preference file you’ll get is for one protocol and will be written to
/sls/X02DA/Data3/e11126/2009d/R108C60Da.txt.

After pressing “Enter”, the script reads the SampleName from the EPICS-panel (you
did set it correctly before, did you?), sets all other necessary parameters (Number of
projections, sample position, start and stop angle, etc.), waits for 10 s, and performs all
necessary subscans with the correct amount of projections at the correct positions. The
only thing you need to do is wait and maybe keep an eye on the console output, which
informs you how things are progressing. The projections of all subscans are saved in the
directories /sls/.../Beamtime/SampleName_si), where si is a directory for each of the
three or five (or seven, but let’s leave it below that) subscans.

3

http://www.ana.unibe.ch/~haberthuer/psi/perform_run
/sls/X02DA/Data3/e11126/Beamtime
/sls/X02DA/Data3/e11126/2009d/R108C60Da.txt
/sls/.../Beamtime/SampleName_si

3 STITCHING

3. Stitching of the projections of the partial scans into merged
projections

When the scan is finished, you have to stitch the projections of the several subscans
to merged projections covering the chosen field of view. There’s a MATLAB script
in ∼/MATLAB/MergeProjections/fct_mergeSubScansInterpolatedSelector.m which
performs such a merging.

This function needs “AmountOfSubScans”, “NumDarks”, “NumFlats”, “Tiff”, “Out-
putSampleName”, “OutputSuffix” as input parameters and asks you to select the correct
subscans to merge, performs the merging and writes the files to /sls/.../Beamtime/

mrg/OutputSampleName-OutputSuffix-mrg).
The details of the parameters are:

AmountOfSubScans Amount of subscans which you’ve scanned to cover the field of
view (s1–s3 → 3 subscans)

NumDarks The number of dark images you’ve acquired prior to the scan

NumFlats The number of flat images you’ve acquired prior and after the scan. Both
are needed to correct the projections. It’s much easier to input them here than to
parse them from the log-file, so I’ve chosen this way. If you don’t know it, look at
the log file of the firs subscan, and there you got everything.

Tiff set this to “1” if you want .tif files as output. If you set it to “0”, the script writes
.DMP to disk (for historic reasons. . .)

OutputSampleName It might be necessary to restart a batch-scan after a beam dump,
but you want to have all scans to have the same Name, so you can set this name
here.

OutputSuffix If you performed a batch scan of the same sample with different parameters,
you can add an suffix to the Output, which then makes the protocols/parameters
distinguishable in the output files.

If you’ve entered everything correctly, MATLAB asks you about the location of the
directories of each subscan, counts the files in the directories (again, much easier than
log-file parsing), then reads the Darks and Flats to correct the projections. To set the
correct gray values in the output files, MATLAB reads a subset of the projections of
each subscan (the amount (GrayValueLoadHowMany)can be changed around line 160 of
fct_mergeSubScansInterpolatedSelector.m, at the moment it’s 100 randomly loaded
projections of each subscan). Afterwards, the scripts calculates the Cutline using Chris’
function_cutline.m, merges the projections of the individual subscans together and
writes a corrected and merged projection to the output path as described above. Addi-
tionally, MATLAB generates a faked log-file in the correct spot, and starts the generation
of the sinograms with a call to sinooff_tomcat_j.py in the correct directory. Since the
RecoManager (used for reconstruction) expects the (fake) .log-file in a certain spot, the
script also hard-links the log-files.

4

/MATLAB/MergeProjections/fct_mergeSubScansInterpolatedSelector.m
/sls/.../Beamtime/mrg/OutputSampleName-OutputSuffix-mrg
/sls/.../Beamtime/mrg/OutputSampleName-OutputSuffix-mrg

4 RECONSTRUCTION

The whole thing takes a while, so you can start the other scans while performing the
merging. To be able to generate sinograms, you’ll have to use MATLAB on ’x02da-cons-2’,
or else it won’t work.

To be able to consistently perform the merging and choose a sane way of setting the
OutputName I generally prefer to cobble together a little script which sets all parameters
and calls the merging function, so I don’t have to think too much. It’s probably easiest
if you open one of the old scripts (do_mergeSubScan2009c.m) in MATLAB, adjust the
parameters at the beginning, save it as a new file and then run this updated script, which
calls the function with the correct parameters. With this you can easily keep track of
which scans you’ve already merged.

4. Reconstructing a WF-SRXTM scan

4.1. Sinograms

To reconstruct the merged projections, we need the Sinograms, the RecoManager and the
command-line on “x02da-cons-2”, so either sit on that machine or make an ssh-connection
into the machine with ssh e11126@x02da-cons-2.

The sinograms of the merged projections should have been generated by the MATLAB
script in the step before. If that didn’t happen, then you can generate the sinograms
with issuing the command

/work/ s l s / bin / s i n o o f f t o m c a t j . py / s l s /X02DA/Data3/ e11126 /
Beamtime/mrg/SampleName mrg/ t i f

in the terminal (denotes when you need to enter a space). It’s probably the best if
you issue pwd in the directory with the projections, which prints the current path and
you can then just copy-paste it. This will generate a bunch of sinograms in /sls/.../

BeamTime/mrg/SampleName_mrg/sin. But again, MATLAB should have taken care of
it.

4.2. RecoManager

Start the RecoManager in Firefox (http://x02da-reco-1) and check and note the
necessary parameters for the reconstruction (Rotation center as well as gray-value scale).
The gray-value scale needs to be adjusted, so that all the grey values are contained inside
the minimum and maximum. Use the sliders on the right of the reconstructed slice
to change them. Note the values for the sample you want to reconstruct, you’ll need
them later. It seems like you’d be able to reconstruct directly from the RecoManager,
since the “Send to”-menu has an entry for the “Schittny”-cluster (see figure 4), but
that does not work correctly for wide field scans (yet). So: DO NOT SUBMIT WITH
RECOMANAGER!

5

/sls/.../BeamTime/mrg/SampleName_mrg/sin
/sls/.../BeamTime/mrg/SampleName_mrg/sin
http://x02da-reco-1

4.3 Reconstruction on the Cluster 4 RECONSTRUCTION

Figure 4: Server entry for our two cluster nodes

4.3. Reconstruction on the Cluster

You’ve noted the rotation center (RotCtr) and both the minimal and maximal gray value
(Gmin and Gmax), you’ll need them both now. Open the console and enter

t i f 2 r e c b a t c h w e b g r i d c n d a v i d . py 3 20 / s l s /X02DA/Data3/ e11126
/Beamtime/mrg/SampleName−mrg/ t i f RotCtr−1 4 ,10 , 0 . 5 0 0 ,0 ,0 ,0

0 , 0 . 3 , 10 8 ,Gmin ,Gmax, 0 . 0 ” s u f f i x ” 1 ,0 ,0 1

and you’ll get the reconstructed slices after a short waiting time (again: =space). They
will be written into /sls/.../BeamTime/mrg/SampleName_mrg/rec_8bit_suffix.

tif2rec batch web grid cn david.py Is the Python-script that was made by Fede. This
is needed to reconstruct the projections with the correct size. If you use the
RecoManager or another script the size of the reconstructions will be 2n × 2n and
not the correct size.

3 20 Tells the script to use our two cluster nodes (if we’re having regular beamtime,
substitute 3 with 1 (?)), and to use all available nodes (20).

/sls. . . /tif Is the full path to the merged projections. Inside this path is the log-file
which is parsed by the script (that’s the reason we’ve generated a fake log-file
with MATLAB). It’s probably the best if you issue pwd in the directory with the
projections, which prints the current path and you can then just copy-paste it.

RotCtr-1 Is the rotation center you’ve checked in the RecoManager in the step before.
Remember that for using gridrec you need to subtract the rotation center by
one. Enter the rotation center with the decimal places, even if there are none
(“1234.00”).

4,10,0.5 Filter and Filter parameters

0 0,0,0,0 Rotation and Region of Interest, generally left at zero

0,0.3,10 Ring removal filter. Generally, we don’t need it. If rings are very prominent,
then swap the “0” for a “1”

6

/sls/.../BeamTime/mrg/SampleName_mrg/rec_8bit_suffix

References References

8,Gmin,Gmin,0.0 Reconstructions with a bit depth of 8=8 bit (or “16” for 16 bit) scaled
to the gray values Gmin and Gmin. The last parameter “0.0” is used, if the files
should be reconstructed into .ISQ-files for the Scanco-Workstation. We just leave
it as “0.0”.

“suffix” the suffix to add to the output directory (rec 8bit suffix), nice if you want to
test different things. Leave empty (“”) if you don’t want to have a suffix.

1,0,0 The first parameter can be used to reconstruct only the xth sinogram (we want
each and every sinogram, thus “1”). The “0,0” can be used to only reconstruct a
region of the slices, e.g. if a ROI should be reconstructed; “0,0” reconstructs the
full slices.

1 “1” is the binning which can be set in addition to the binning of the camera.

It’s probably easiest for you if you copy the command into a text file so you can make
sure you’ve got no typo and then enter it on the command line. Wait a bit and enjoy
your reconstructions of a WF-SRXTM scan.

References

[1] David Haberthür, Christoph Hintermüller, Johannes C. Schittny, and Marco Stam-
panoni. Quality-driven expansion of the field of view in synchrotron radiation x-ray
tomographic microscopy. Journal of Synchrotron Radiation, 2009. doi: 10.1107/.
URL http://dx.doi.org/10.1107/. in preparation.

[2] M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange,
R. Betemps, S. Henein, and R. Abela. TOMCAT: A beamline for TOmographic
Microscopy and Coherent rAdiology experimenTs. AIP Conference Proceedings, 879
(1):848–851, 2007. doi: 10.1063/1.2436193. URL http://link.aip.org/link/?APC/

879/848/1.

[3] Christoph Hintermüller, Federica Marone, Andreas Isenegger, and Marco Stampanoni.
Image processing pipeline for fast Synchrotron based X-Ray Micro-Tomographic
Microscopy. Journal of Synchrotron Radiation, 2009. submitted.

7

http://dx.doi.org/10.1107/
http://link.aip.org/link/?APC/879/848/1
http://link.aip.org/link/?APC/879/848/1

B SETUP OF THE SCAN

A. Appendix - Detailed Explanation of all involved MATLAB
files

Explanation of the several involved files, for documentation and “working n”-purpose.
All necessary files to perform the steps mentioned above are under version control with
subversion at http://code.ana.unibe.ch/ in the “wfs-sim” repository (the repository
is called “wfs-sim”, because it first contained only the files for the simulation. Now it
included everything to perform a wide field scan).

Most of the files are functions which are called to perform several sub-tasks of the
main.m-file, and are denoted with a fct_-prefix. A lot of files in the directory are used
for testing the functions. Those testing files are denoted with a test_-prefix.

B. Setup of the Scan - main.m

main.m is the main MATLAB-File that is used for the simulation. The code should be
fairly commented, nonetheless I’m explaining it here in a bit more details.

The user is first asked for some input parameters (see figure 3) which are input through
an InputDialog, which is seeded with some sensible defaults. The desired FOV (FOV_mm)
is probably the most important factor in the whole calculation, since it influences the
AmountOfSubScans. Binning, Magnification and chosen Overlap between SubScans
(Overlap_px) are used to calculate the number of subscans needed. Using the Binning,
we can calculate the DetectorWidth, since the camera is 2048 pixels wide and we assume
that the full sensor is used. The pixelsize can be calculated using the Magnification,
according to the TOMCAT website. The DetectorWidth and the Overlap define the
width of one subscan or segment (SegmentWidth_px) and thus the AmountOfSubScans. If
the sample does not perfectly fit in the diameter of AmountOfSubScans × SegmentWidth,
we’re actually “loosing“ imaging real estate, and we inform the user. The actual FOV
(ActualFOV_px) is used for the calculation of the correct number of projections.

After we make sure that we have an odd amount of SubScans, we use the function
fct_SegmentGenerator to calculate the NumberOfProjections from the inputs. The
resulting table is X amounts of SubScans wide and Y protocols tall.

The user specifies the image size that should be used for the calculation of the simulated
error (SimulationSize_px). Since the radon and inverse radon transform is quite
processor-intensive we simulate with a model where the images and reconstructions are of
a smaller size. While making sure that the overlap for this model still stays above 5 pixels,
we calculate the reduction factor according to the user input (ModelReductionFactor)
and scale the table with the number of projections, the phantom image (ModelImage)
and the detector width (ModelDetectorWidth) with this reduction factor. After we have
calculated a full size sinogram and a full size reconstruction (ModelMaximalSinogram
and ModelMaximalReconstruction), we use the function fct_ErrorCalculation for
details on this function) to calculate the error of each protocol.

This error is kept track of in AbsoluteError and ErrorPerPixel(Protocol), once
as absolute and once normalized to the total amount of pixels in the image. After

8

http://en.wikipedia.org/wiki/Subversion_%28software%29
http://code.ana.unibe.ch/
http://code.ana.unibe.ch/websvn/listing.php?repname=wfs-sim&path=%2F&sc=0
http://sls.web.psi.ch/view.php/beamlines/tomcat/layout/detectors/index.html

B.1 fct ProtocolGenerator B SETUP OF THE SCAN

we’ve sorted the number of projections and summed the amount of projections for each
protocol (TotalSubScans), we plot this value versus the QualityMeasure. The Quality
is calculated in such a way that we subtract the maximum of the Error per Pixel from
all the Errors per Pixel, so we get a high value for low Errors and vice versa. After we’ve
scaled this value to the minimal and maximal quality the user has input, we provide
the user a mean of choosing the protocol, that suits his needs in terms of quality and
scanning time.

The chosen value is saved into User_NumProj and subsequently written to disk to a
file UserSampleName.txt which contains the details of the chosen Protocol, including
InBeamPosition and the angles of the rotation stage (which are currently hardcoded as
RotationStartAngle=0◦ and RotationStopAngle=180◦, but can be easily changed on
line 325 and 326 of the main.m-file.

B.1. fct ProtocolGenerator

This function calculates and outputs a matrix of Projection Numbers after it gets the
SampleWidth, the Amount of Subscans and the parameters of the Quality (Qmin, Qmax

and Qstep). After checking for a cutoff quality of 30% (and setting it lower if the
user insists), the function calculates the minimal number of images needed to fulfill
the sampling theorem and calls the function fct_GenerateSegments to generate the
projection numbers for the different subscans.

B.1.1. fct GenerateSegments

This function internally calls itself again and generates the matrix of number of projections
while dividing the number of images by two (which decreases the amount of projections
for the central scan (or central scans if the amount of subscans is bigger than 3).

B.2. fct HowLongDoesItTake

We’d like to inform the user about an estimate on how long the whole scan (with 3, 5
or more subscans) will take, so he or she has an estimate on how many scans can be
squeezed into the beamtime. The time needed obviously depends on the total amount of
projections. The news stepping technique implemented at TOMCAT uses a hardware-
trigger for the stage and includes a wait for 200ms (TriggerTime). Since with our setup,
we always rotate for 180◦ and the stage rotates with a speed of 90◦/s, the time needed
to record 1 projection can estimated with tproj = 1

90180◦ 1
NumProj . Since—according

to Fede—the camera has a readout time of 451ms, we set this as time needed for one
projections if the Exposuretime plus TriggerTime plus tproj are smaller than this readout
time. Additionally, we add 1min for moving the sample between each subscan. The
output of this function is the TotalTime needed for one protocol in minutes.

9

B.3 fct ErrorCalculation.m B SETUP OF THE SCAN

B.3. fct ErrorCalculation.m

This function uses an input image as baseline image (a Shepp–Logan phantom with
added Gaussian noise), the number of projections of each subscan and the maximal
reconstruction (radon-transformation and iradon-reconstruction of the phantom) as
an input. Inside the function we split the image into different parts (according to the
amount of subscans). According to the different amount of projections from the outer
to the inner scans we interpolate rows of these parts from the sinogram of the maximal
image using another function (fct_InterpolateImage). This corresponds to a different
amount of recorded projections, since these are “encoded” in the rows of the sinogram.
Since MATLAB calculates the sinogram 90◦ rotated to what we know and like, the
sinogram is internally flipped (thus we get the “interpolating in horizontal direction” in
the command-line output of MATLAB) when the numbers of projections for the scans
need to be interpolated. The interpolated sinogram is reconstructed and is shown in
together with the difference image if the user requests it with the input ShowFigure.

As an error-measure we calculate the absolute image difference and take the sum over
each pixel—

∑
horiz.(

∑
vert.(DiffImg))—of the difference image of the resulting reconstruc-

tion and the model image. The difference image is calculated with the MATLAB-function
imabsdiff which calculates the absolute difference between two images, so we don’t have
to take the square of this error.

The output of the function is the absolute error AbsoluteError and the error per pixel
ErrorPerPixel which is the absolute error divided by the amount of pixels in the image.

B.3.1. fct InterpolateImageRows

Since I’m very bad at remembering how to interpolate in MATLAB I’ve written a
small function which takes an input image InputImage, a parameter which describes
every xth line that should be interpolated (InterpolateEveryXthLnie). The output
is an image which has every xth line interpolated. This function is used to generate
“merged” sinograms with reduced amount of projections in the central part of the sample,
which is needed for the function fct_ErrorCalculation.m specified above. An optional
parameter (“1”) tells the function to flip the input image, since MATLAB generates the
sinograms 90◦ rotated to what we know (and is generally set).

B.4. Example of a preference file

Below is an example of a preference file which is generated as output by the main.m-
MATLAB file and contains all parameters for one wide field scan. Such a .txt-file is then
subsequently read by the widefieldscan_final.py-file and used to set the parameters
in the EPICS-panel at TOMCAT.

1 # Path = P:\MATLAB\WideFieldScan\Pr e f e r e n c eF i l e s \2009d
SampleName = R108C60Da

3 # chosen FOV = 4.1 mm
chosen FOV = 2770 p i x e l s

5 # actua l FOV = 2772 p i x e l s

10

C MERGE SUBSCANS

DetectorWidth = 1024 p i x e l s
7 # Exposure Time = 125 ms per Pro j e c t i on

Magn i f i ca t i on = 10 x
9 # Binning = 2 x 2

Overlap = 100 p i x e l s
11 # Chosen Protoco l = Nr . 8

#−−−
13 # NumProj InBeamPosition StartAngle StopAngle

#−−− Protoco l 8/7839 t o t a l Proj ./62 minutes −−−#
15 2613 −1367.5 0 180

2613 0 0 180
17 2613 1367 .5 0 180

C. Merge Subscans - /MergeProjection/fct -
mergeSubScansInterpolatedSelector.m

This function is a further development of the function (fct_mergeSubScansSelector.m)
which asks the user to point to the directories of the subscans and merges them. This
developed version does interpolate the necessary projections and does not only dumbly
re-use the existing projection at each point. The demanded input parameters are
AmountOfSubScans, Number of Darks and Flats, Tiff, BeamTime, OutputSampleName
and OutputSuffix.

The amount of subscans is used to know how many projections need to be stitched
together. We ask for the input of the number of dark and flat images since parsing the
log-files has been shown to be too complicated, so entering it is straight-forward. The
option Tiff is mainly for historic reasons. If it’s set to “1”, the output are .tiff files, if
it’s set to “0”, the output are .DMP-files. The BeamTime is used to construct the correct
directory for reading the projections. The OutputSampleName is used to override the
SampleName, which can come in handy if there was a beam dump at TOMCAT and
you had to change the SampleName, but want to have a common output name to all
samples. The OutputSuffix can be used to distinguish several protocols with the same
output name.

The script asks the user to input the directories of the subscans (so arbitrary scans could
be stitched together, thus the script is very flexible), counts the amount of projections in
the directories (CurrentSubScan).NumProj to get a grasp of the number of projections
(again, the script is flexible and could be used with a “wrong” number of projections).
With this number of projections we calculate a modulo of projections of the different
subscans, so we know how many projections need to be interpolated to be able to correctly
stitch the projections.

Since MATLAB handles gray values of .tiff-files differently than the beamline scripts
at TOMCAT, we load a random subset of images (GrayValueLoadHowMany projections
from each subscan) and look for a global minimum and maximum of the gray value in
this subset of projections (GlobalMin and GlobalMax). These values are padded with a
safety margin and used to scale the merged projections later on in the script.

11

C.1 function cutline C MERGE SUBSCANS

We load a projection image of each subscan and calculate the cutline where the files are
to be merged using Chris’ function function_cutline. Generally, we orient the sample
that the longest side of the lung tissue is parallel to the beam. The cutline function
needs features in the projection images to be able to calculate a cutline, so we choose a
projection in the middle of the set, where the sample is oriented perpendicular to the
beam. If the sample is oriented perpendicular to the beam, we would need to calculate
the cutline from the first projections. This made it necessary to introduce an internal
option perpendicular for choosing the correct projections. Since we generally orient
the sample parallel to the beam, this option is only accessible internally from the file,
but can be easily changed around line 217. Figure 5 shows how the parameter should be
set according to the position of the sample at the start of the scan. If you see that the
projections from the subscans are stitched wrongly, or the command-line prints “cutline
is 0 pixels” but you know that there is an overlap, then this is something to double-check.

beam sample
camera

(a) perpendicular=0, standard

beam sample
camera

(b) change option to “perpendicular=1”

Figure 5: The position of the sample at the start of the scan influences the “perpendicular”
option.

After the detection of the cutline, the script loads the projections from each subscan,
interpolates projections with fct_ImageInterpolator if necessary, merges them to big
projections with the correct cutline and writes those .tiff-filed to disk in the directory
/sls/.../BeamTime/mrg/OutputSampleName/tif.

After all merged projections have been written to disk, the MATLAB script generates
a log-file (/sls/.../BeamTime/mrg/OutputSampleName/tif/OutputSampleName.log)
using dlmwrite, which just writes a text file which looks exactly the same as the log-files
generated by TOMCAT. This log-file is then hard-linked to /sls/.../BeamTime/mrg/

log/OutputSampleName.log, where it’s kept for future access.
With a command-line call to /sinooff_tomcat_j.py the script automatically generates

the sinograms, so that further processing in the RecoManager can be done without issuing
another command.

C.1. function cutline

This is a MATLAB script that has been made by Christoph Hintermüller, which takes
two images as input and outputs the pixel-position at which those two overlap. It extracts

12

/sls/.../BeamTime/mrg/OutputSampleName/tif
/sls/.../BeamTime/mrg/OutputSampleName/tif/OutputSampleName.log
/sls/.../BeamTime/mrg/log/OutputSampleName.log
/sls/.../BeamTime/mrg/log/OutputSampleName.log

C.2 fct ImageInterpolator C MERGE SUBSCANS

a similarity of the images while the images are slid over each other, using the mean
quadratic difference. The function is described in Chris’ paper [3].

C.2. fct ImageInterpolator

This function takes two Input Images (ImageToInterpolate1, ,ImageToInterpolate2)
and a factor of how many Images should be interpolated between the two Input Im-
ages (InterpolateHowManyInbetween). This factor influences the grid distance of the
meshgrid, which is used to calculate the interpolation. The output of the function
is a stack of images with the first and the last slice set as the two original input
images filled with the interpolated images. The resulting output stack has a size of
(x,y,InterpolateHowManyInbetween+2) (where x and y are the size of the two input-
images, which obviously need to be of the same size).

13

	Setup
	Scan
	Stitching
	Reconstruction
	Sinograms
	RecoManager
	Reconstruction on the Cluster

	Appendix
	Setup of the Scan
	fct_ProtocolGenerator
	fct_GenerateSegments

	fct_HowLongDoesItTake
	fct_ErrorCalculation.m
	fct_InterpolateImageRows

	Example of a preference file

	Merge Subscans
	function_cutline
	fct_ImageInterpolator

